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Abstract

The leapfrog scheme is a commonly used second-order method for solving dif-
ferential equations. Letting Z denote the state of the system, we compute the state
at the next time step as Z(t+1) = H(Z(t),Z(t — 1), W), where t denotes a par-
ticular time step, H is the nonlinear timestepping operator, and W are parameters
that are not time dependent. In this article, we show how the associativity of the
chain rule of differential calculus can be used to expose and exploit intermediate
derivative sparsity arising from the typical localized nature of the operator H. We
construct a computational harness that capitalizes on this structure while employ-
ing automatic differentiation tools to automatically generate the derivative code
corresponding to the evaluation of one time step. Experimental results with a 2-D
shallow water equation model on IBM RS/6000 and Sun SPARCstations illustrate
these issues.
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1 Introduction

The leapfrog method 1s a commonly used second-order method for solving differential
equations (see, for example, [11, pp. 53 ff.]). Let Z(¢) and Z(¢ — 1) denote the current
and previous state of a time-dependent system, respectively. Except for possibly the
initial steps, a leapfrog scheme computes the state Z(¢ 4+ 1) at the next time step as

Z(t+1) = H(Z@), Z(t — 1), W), (1)

where H is the nonlinear operator advancing the system state. and W are system
parameters that are not time-dependent. That is, the code has the structure shown in
Figure 1.

Initialize Z(0) and W.
Compute Z(1).
fort=1toT7 -1 do
ZA+ 1) =HZQ), 72t -1),W);
end do

Figure 1: Schematic of a Leapfrog Scheme

7)

T is the final time step and X denote the variables whose derivatives one is interested
in, typically a subset of the initial inputs of the model. Using automatic differentiation

Z(T)
<

of the various approaches to AD can be found in [2, 10] and an overview of currently
available AD tools at URL http://www.mcs.anl.gov/Projects/autodiff/AD Tools.
These tools will generate code that computes accurate derivatives and it will be rea-
sonable efficient given the fact that no knowledge of the underlying problem was used
m generating the derivative code. As this article will show, however, we can favorably
exploit the structure in typical PDE-based computations arising from the sparsity of the
underlying operators in the use of AD tools.

In applications such as parameter identification one may be interested in , where

(AD) tools, we can easily generate derivative code to compute A discussion

To illustrate, we let Z € R", W € IR?, and let X € IR’ X C [Z(0), W], s < n+p, denote
the variables with respect to which we are differentiating. Tools such as ADIFOR [5]
or ADIC [8], or any other tool that is based mainly on the so-called forward mode of
dZ(T)

dX
just computing Z(T) (in terms of both runtime and memory) by maintaining derivatives
of program variables with respect to X.

automatic differentiation can compute at a cost on the order of s times that of




To motivate how we can do better, we differentiate (1) and obtain

dzZ(t+1) 0H dZ(1) oH dzZit—-1) 0H dW 2)
dX S 0Z(t) dX az(t—-1) dX oW dX’
where all partial derivatives of H are evaluated at (Z(¢), Z(t — 1),1¥). Typically, the
. oH 0H .
matrices and are sparse due to the local nature of the stencil employed

JZ(t) 9zZ(t—1)
in H, and one can exploit this fact to compute them inexpensively using forward-mode
based AD tools [1, 7, 9]. Thus, if we use the aforementioned AD tools to (cheaply)

OH oH dZ(t+1)

compute and and then form

az(t) " 9zt—1) dX

matrix multiplications, we may well come out ahead.

through a series of matrix-

This article is structured as follows. In the next section, we review the capabilities of
current forward-mode-based AD tools with respect to computing arbitrary directional
derivatives and show how chain rule associativity allows us to exploit intermediate spar-
sity in the problem. In section 3, we introduce a 2-D shallow water equation model
problem [12, 13]. In Section 4, we present experimental results obtained with this code,
using ADIFOR-generated derivative code on an IBM RS/6000 and Sun SPARCstation

platforms. Lastly, we summarize our results.

2 Stencil-Induced Intermediate Sparsity

Automatic differentiation (AD) is a technique for augmenting codes with statements for
the computation of derivatives. Compared with other approaches for computing deriva-
tives (e.g., by hand, divided differences, or symbolic approaches), it provides guaranteed
accuracy, ease of use, and computational efficiency. The ADIFOR [4, 5] and ADIC [8]
tools for Fortran and ANSI-C, respectively, directly generate derivative code (in Fortran
or ANSI-C) that, given a user’s specification of dependent and independent variables,
computes the partial derivatives of all of the specified dependent variables with respect
to all of the specified independent variables, in addition to the original result. As dis-
cussed in [5], the so-called forward mode of automatic differentiation that underlies these
tools allows not only the computation of the full Jacobian J associated with the chosen
dependent and independent variables, but any set of directional derivatives J - 5.

Examples of the resulting flexibility in the use of the generated derivative code are shown
in [6], but one particular use is that of exploiting sparsity. For example, to compute
a Jacobian J with the following structure (symbols denote nonzeros, and zeros are not



shown),

OO
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A O

A O
we can exploit the fact that columns 1 and 2 and columns 3 and 4 have nonzeros in
disjoint row positions. By initializing S as

S =

o O ==
_ o O

we compute a so-called compressed version of J at roughly half the cost compared with
that induced by setting S to a 4 x 4 identity. In general, the groups of columns that can
be grouped together can be identified via a graph-coloring approach. This “compressed
Jacobian” approach has been used successfully in large-scale optimization [1, 7].

An alternative approach to exploiting sparsity is to employ sparse data structures for the
derivative objects in the AD-generated code. The SparsLinC library, which is integrated
with the ADIFOR and ADIC tools, provides this functionality, and has been successfully
employed in large-scale optimization [3, 7].

Let us now assume that, using a forward-mode-based AD tool, we have generated from
the original code shown in Figure 1 a new code to compute derivatives of Z(T') with
respect to Z(0) and W. A schematic of this code is shown in Figure 2. We call this the
“black-box approach.”

- d Z(0) dWw

Initialize Z(0), VZ,Z fl)X , and i
te [Z(1), —==].
Compute [Z(1), e ]

fort=1to7 -1 do
dZ(t+1)
Z(t -
704 1), A
end do

dZ(t—1) aw
dxX U dx”

1=9g-H(Z(),

Figure 2: Schematic of an Automatically Differentiated Leapfrog Scheme

In particular, a derivative-augmented version g_H of H was generated:

[Z(t+1),9-2(t+1)] = g-H(Z(t),9-2(t), Z(t =1),9-2(t = 1), W, g W).  (3)



The g_H routine computes both Z(¢ + 1) as in (1) and

0204 1) = 5 020 + G 02U =+ e W @

where all partial derivatives are evaluated at (Z(t), Z(t — 1), W).

The input derivative matrices g_7Z(0) and g_W are usually referred to as “seed matri-

ces,” as their initialization determines what kind of (directional) derivatives is being

computed. Let I;«; and 0;x; denote an ¢ x j identity and null matrix, respectively. If
we were to initialize

9-2(0) = ( Inxn 5 Onxp ) and g W = ( Opscn 5 dpxp ) (5)
at the beginning of the code in Figure 2, upon completion we would have obtained

L dzT) dAT)
gz(T)‘( dZ2(0)  dW )

at a cost that would be O(n + p) times that of computing Z(T') itself.

In general, let us assume that the computation of H takes fr flops and O(2 *n + p)
words of storage for every time step (typically, the state is only stored for the current
and previous time step). Then, ignoring the startup cost in time step 0, for any subset
X of s variables from the set of potential independent variables, a tool such as ADIFOR

dzZ(T
or ADIC can compute dg( ) with O(s T * fpr) flops and O(s # (2« n + p)) words of

storage overall.

In typical stencil-based computations, the timestepping operator H is of a localized
nature: a particular gridpoint depends on its own value and the value of some of its
neighbors at the current and previous time step. As a consequence, the Jacobians

6—H and 67}] will be sparse.

az(t) ozt —1)

If we set
g_Z(t) — (Inxn, 0n><na 0n><p)
g-Z(t—-1) = (OnxnajnxnaonXP) (6)
g W = (Opxn, Opxn, Ipxp)

then the invocation of
g-H(Z(t),9-2(t), Z(t = 1),9-Z(t = 1), W, 9. W)
computes 2n + p derivatives and returns

oH  oH  oH
g2 +1) = <6Z(t)’8Z(t—1)’6W) '




If we exploited sparsity in a transparent fashion as is done with SparsLinC, for example,
the cost of this computation will not be 2n 4+ p times that of computing H, but rather
% that of computing H, where £ does not depend on n, but rather on the size of the
stencil. In the sequel, we call this approach the “SparsLinC approach.”

Alternatively, let S' and S? be suitably chosen seed matrices to compute compressed

H H
versions of 0 and 0 with Ay and Ay columns, respectively. Then we ini-
d7Z(t) az(t—-1)
tialize
g—Z(t) = (Srllx)\laonxkgaonxp>
g_Z(t—l) = <0n><>\1’5721><>\2’0n><p) (7)
g‘W = (0P><>\1’0P><>\2a1p><p)~
Upon return from g_H, the first A; columns of g_Z(¢ + 1) will contain a compressed
H H
version of 6Z—(t)’ the second As columns a compressed version of m, and the

last p columns The cost for this approach is A that of computing H, where

A= A1 4+ Az 4+ p. In the sequel, we call this approach the “compressed approach.”

0H 0H OH dZ(t+1
Independent of how 920 92041 and W were computed, % is then
computed with three matrix-matrix multiplications using the already known quantities
dzZ(t) dzZ(t—-1 d
d)(()’ c(lX ), and —W The resulting algorithm is shown in Figure 3 and we call

this approach the “intermediate sparsity” approach.

We note the following:

e Using Alternative 1, Step 1 requires O(T * & * frr) flops and O(x * (2 * n + p))
words of storage. Using Alternative 2, the cost of Step 1is O(T * A * fg) flops
and O(A * (2 * n + p)) words of storage. Typically, & &~ A, and the number of
floating-point operations expended for the computation of H is proportional to n.
Thus, the floating-point cost of computing the time-step derivatives scales with
T * n, whereas the memory requirements are O(n). This cost does not depend on

dZ(T)
dX

what overall derivatives are desired, we always compute derivatives with respect

to Z(t), Z(t — 1), and W at every time step.
OH dZ() d 0OH dZ(t—-1)

0720 dx " az(t—1) ~ dx

a sparse matrix of size n x n with a dense matrix of size n x s. Thus, the cost

the total number s of derivatives that we are computing. Independent of

e Both

are, in general, multiplications of

of this step depends, in addition to n, on the number of nonzeros in



Initialize Z(0), I/Z,Zfl)—x, and 5d
C —].
ompute [Z(1), X ]
fort=1to7T —-1do
O0H O0H OH

Step 1: Compute

d
a2y 0Z(t—1) " aw

via an invocation of g_H geared toward exploiting sparsity.

dZ(t+1
Step 2: Compute ﬂ via a matrix-matrix multiplication:
dzZ(t+1) 0H dZ(t)+ oH dzZit—-1) 0H dW
dX  07(t) dX az(t—-1) dX ow dX

/* NOTE: This step assumes proper implementations of the multiplication
of a sparse matrix by a dense matrix. */

end do

Figure 3: Schematic of a Differentiated Leapfrog Scheme Exploiting Intermediate Spar-
sity

0H . L . .
, the size n of Z, and the number s of derivatives in and its

_9H Z
aZ(t—1) dX

floating-point complexity scales with T * n % s. However, 1t does not depend on

fH.

e For this scheme to lead to computational improvements, the cost of the matrix-
matrix multiply must not dominate the overall computational cost. This will be
the case if sufficient effort is expended in the stencil computation (thus leading to
a sizable frr).

e The exploitation of intermediate sparsity only makes sense when x and A are
small compared to s. In this case, we also expect some storage savings because the
intermediate sparsity approach requires less storage for the derivatives of variables
internal to H.

3 A 2-D Shallow Water Equation Model Problem

To 1llustrate the issues discussed previously, we employ a 2-D shallow water equations
model problem [12, 13]. This code is simple, yet exhibits the characteristic features
we based our algorithmic suggestions on, namely, a leapfrog method as time propa-
gator, and a stencil-based propagation operator. In this particular example, any row



J(OH _oH  oH
TNz 94t —1) 0w

matrix is shown in Figure 4 for n = 363 and s = 4. The total number of nonzeros

) has at most 13 nonzeros. The nonzero structure of this

in the matrix is 3,101. As for , 1t 1s essentially diagonal, with corner points

oH
aZ(t—1)

attributing off-diagonal entries.
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Figure 4: The Sparse Jacobian Associated with the Shallow Water Equations Model

dZ(t) dZ(t)
dz(0) dwW
the derivative seeding (5). Note the fill-in as these sparse matrices are multiplied out.
We noted that for ¢ > 9 the structure of these Jacobians did not change any more
and they were essentially full. Somewhat surprisingly, though, there were still some
zero entries per row — the maximum number of nonzeros per row was 355 instead of
n 4+ p = 367 as one might have expected.

Figure 5 shows the structure of the Jacobians ( ) fort =1,...,6, using

This fill-in 1s expected, as the stencil nature of the computation implies that information
is spread further and further through the grid at every time step. The scheme outlined
in Figure 3 concentrates this fill-in in the matrix accumulation step, while the deriva-
tive computation corresponding to a particular time step tries to exploit the sparsity
shown in Figure 4. This phenomenon is further illustrated in Figure 6, which shows the
average number of nonzeros occurring in derivative computations over the runtime of
the code. The left plot shows the black-box approach with the seeding denoted in (5);
the right plot shows the approach outlined in Figure 3. We see that in the black-box
approach, the number of nonzeros steadily rises until it reaches 355. In contrast, the
number of nonzeros in the derivative vectors in the approach that exploits the inter-
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Figure 5: Jacobian Fill-in in the Shallow Water Equations Model



mediate sparsity is never more than 13, the maximum number of nonzeros per row of

oH oOH OH
QZ(t) 0Z(t—1) oW

same computation takes place.

), and structurally, except for the very first time step, the

Black-Box ADIFOR Exploiting Intermediate Sparsity
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Figure 6: Nonzero Entries in Derivative Vectors over time in the “Black-Box” and
“Intermediate Sparsity” Approach

4 Experimental Results

We compared the approach suggested with a “black-box” application of ADIFOR on
Sun SPARCstation 5 and an IBM RS/6000 workstation platform. For the problems
shown in Table 1, we computed s = n + p derivatives with respect to Z(0) and W (the
seeding suggested in equation (5) for 60 time steps.

Table 1: Shallow Water Equations Model Problems

| Grid Size | n |
11 x 11 3x11%11 =363

16 x16 | 3% 1616 =768
21 x21 | 3%21%21=1323

IS B

We compute the sparse Jacobian shown in Figure 4 using SparsLinC or, alternatively,
using SparsLinC in the first time step to determine the sparsity structure and then using
the compressed Jacobian approach in subsequent time steps. The latter approach is
feasible here because the sparsity pattern does not change (continuous use of SparsLinC
could accommodate varying sparsity patterns). Table 2 shows the overall runtime of

10



the black-box ADIFOR, approach, the time spent by the intermediate sparsity approach
in the computation of the sparse Jacobian using either the SparsLinC or compressed
Jacobian approach, and the matrix-matrix accumulation. The total runtime of the
intermediate sparsity approach is the sum of the matrix-matrix multiply time and either
the SparsLinC or compressed Jacobian entry. Table 3 contains a summary of the memory
requirements of these runs (the numbers for the IBM and Sun platforms are very similar).

Table 2: Runtime for Shallow Water Equations Model Problems (in seconds)

IBM RS/6000 SPARCstation

11x11 16x16 21 x21 11 x 11

Black-Box ADIFOR 4.24 36.68 71.98 26.63
SparsLinC 4.90 17.77 42.98 12.26
Compressed Jacobian 1.93 8.70 21.51 6.55
Matrix-Matrix Mult. 8.03 38.66  119.32 19.24

Table 3: Memory Requirements for Shallow Water Equations Model Problems (in
Mbytes)

| [11x 11 16x16 21x21 |

Black-Box ADIFOR, 4.70 18.82 53.31
SparsLinC 3.72 13.61 37.82
Compressed Jacobian 3.85 13.84 38.16

We observe that except on the Sun SPARCstation, the intermediate sparsity scheme does
not produce any runtime improvements overall, since the matrix-matrix multiplication
cost dominates overall cost. In our experiments, we employed a standard sparse matrix-
vector multiply kernel written in Fortran as well as an ESSL library routine on the
IBM system but found little impact on performance. We also see that the intermediate
sparsity scheme requires less memory, since data internal to H require shorter gradients.
In all cases, derivatives produced with the various schemes agreed to machine precision.

The disappointing performance of the intermediate sparsity scheme in this particular
case 1s not really surprising. We compute a large number s of derivatives, and the
shallow water equations solver i1s based on a five-point stencil and updates the east
and west wind components as well as the geopotential at a cost of only 59 flops per
gridpoint. To simulate performance for a computationally more intensive problem, where
the computation of the sparse Jacobian corresponding to one time step required more
work, we executed the code for one time step from 1 (the original problem) to 16 times,
thereby increasing the computational weight of the stencil by a factor of up to 16 while

11



keeping the structure of the resulting Jacobian unchanged. That is, the floating-point
cost of both black-box ADIFOR, and the Jacobian associated with a particular time step
will increase by the number of repetition, while the cost of the matrix-matrix multiply
as well as the memory requirements of the code remains unchanged. The resulting
computational behavior is shown in Figures 7 and 8. Speedup here is ratio of CPU time
of the black-box ADIFOR approach versus the CPU time of the intermediate sparsity

approach.

Shallow Water Equations model (SWE)

SparsLinC

—+— Sun Sparc 5, SIZE = 11x11

35 —-a- IBM SP, SIZE = 21x21
«-+1BM SP, SIZE = 16x16

— - IBM SP, SIZE = 11x11

15
.
1.0 T
0.5
0.0 T T T 1
1 2 4 8 16
Repetitions

Speedup

Shallow Water Equations model (SWE)

Compressed Jacobian

7.0
6.0 —— Sun Sparc 5, SIZE = 11x11
— =— IBM SP, SIZE = 21x21
5.0 *--IBM SP, SIZE = 16x16
— > IBM SP, SIZE = 11x11

4.0 o
3.0
20
1.0 -
b=
0.0
1 2 4 8 16
Repetitions

Figure 7: Serial Speedup of Intermediate Sparsity Scheme

Figure 7 shows that we can in fact obtain considerable speedup if the computational
weight of the time step update 1s sufficiently large in comparison with the cost of the
matrix-matrix accumulation step. This is also evident in Figure 8, which shows the
steadily decreasing influence of the matrix-matrix multiply time as the amount of work

per time step increases.

Shallow Water Equations model (SWE)
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Figure 8: Percentage of Time Spent in Matrix-Matrix Multiply for Intermediate Sparsity

Scheme
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5 Conclusions

In this article, we considered the differentiation of a leapfrog scheme, a commonly used
second-order method for solving differential equations. We employed the associativity
of the chain rule to exploit the sparsity of the differential operator at an individual
time step and derived a derivative accumulation scheme that combines a derivative
code generated by automatic differentiation for the time step update with an explicit
matrix-matrix multiply harness that implements the chain rule at a one-timestep level.
Experimental results with a shallow water model problem illustrated this approach and
also showed that this approach could significantly improve overall performance if the
one-timestep update has sufficient computational weight to make up for the cost of the
matrix-matrix multiply. We emphasize that the computational harness thus derived
is generic — we assumed only that the Jacobian associated with one particular time
step is sparse. The coding complexity of the computation occurring in one particular
time step is irrelevant, as this part is handled by automatic differentiation. In fact, a
more complicated model will likely lead to a more favorable balance between the matrix-
matrix multiply and the computation of the Jacobian associated with a particular time
step.
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